An Indestructible Blaschke Product in the Little Bloch Space

نویسنده

  • C. J. BISHOP
چکیده

CHRISTOPHER J . BISHOP The little Bloch space, 130 , is the space of all holomorphic functions f on the unit disk such that lim1 z 1l (f'(z)j(1 Iz12) = 0. Finite Blaschke products are clearly in 130, but examples of infinite products in 80 are more difficult to obtain (there are now several constructions due to Sarason, Stephenson and the author, among others) . Stephenson has asked whether 130 contains an infinite, indestructible Blaschke product, Le., a Blaschke product B so that (B(z) a)/(1 QB(z)), is also a Blaschke product for every a E D. In this paper we give an afirmative answer to his question by constructing such a Blaschke product. We also answer a question of Carmona and Cufí by constructing a VMO function, f, so that Ilf J¡ . = 1 and whose range set, R(f, a) = {w : there exists zn, ~ a, f(z~) = w}, equals the open unit disk for every a E T .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterisation of the Isometric Composition Operators on the Bloch Space

In this paper, we characterise the analytic functions φ mapping the open unit disk ∆ into itself whose induced composition operator Cφ : f 7→ f ◦ φ is an isometry on the Bloch space. We show that such functions are either rotations of the identity function or have a factorisation φ = gB where g is a non-vanishing analytic function from ∆ into the closure of ∆, and B is an infinite Blaschke prod...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

On a New Integral-Type Operator from the Weighted Bergman Space to the Bloch-Type Space on the Unit Ball

We introduce an integral-type operator, denoted by P φ , on the space of holomorphic functions on the unit ball B ⊂ C, which is an extension of the product of composition and integral operators on the unit disk. The operator norm of P φ from the weighted Bergman space A p α B to the Bloch-type space Bμ B or the little Bloch-type space Bμ,0 B is calculated. The compactness of the operator is cha...

متن کامل

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

Inner Functions in the Hyperbolic Little Bloch Class

An analytic function φ mapping the unit disk into itself is said to belong to the hyperbolic little Bloch class if the ratio (1−|z|2)|φ′(z)|/(1−|φ(z)|2) converges to 0 as |z| → 1, while φ is in the little Bloch space if just the numerator of this expression converges to zero. Several constructions of inner functions in the little Bloch space have recently appeared. In this paper we construct a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006